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Unit-1: Basics of Digital Electronics 

 Number System-Binary, Octal, Decimal, Hexadecimal - Conversion from one system to another number system. 

In digital electronics, the number system is used for representing the information. 
The four most common number system are: 

 
1. Decimal number system (Base- 10) 
2. Binary number system (Base- 2) 
3. Octal number system (Base-8) 
4. Hexadecimal number system (Base- 16) 

The Base or Radix of the number system is the total number of digit used in the number system. 
For example, in decimal number system, it represents digit from 0-9 then the base of the system is 10. 
Important terms: 
Bit: A bit is the smallest unit of information. Bits in computer are grouped to form a lager unit of information 
Byte: A byte is a combination of eight bits. Eight bits represent a character and is called a byte. 
Nibble: A nibble is a combination of four bits, in other words a nibble is half a byte. 
Word: a word is a combination of 16 bits, 32 bits or 64 bits depending on the computer. 16 is known as quad word. 
Kilobyte (kb): A kilobyte has a memory unit of 1024 (210) 
Megabyte: a megabyte has a memory unit if 1,048,576 (220). This is approximately 1 million bytes. 
Gigabytes (Gb): A gigabyte has a memory unit of 1,073,741,824 (2**30). This approximately billion bytes. 
Terabytes: a terabyte has a memory unit of (2**40). This is approximately 1 trillion bytes. 
Note: 
1024 byte = 1 kilobyte (1kb) 
1024 kilobytes = 1 megabytes (1mb) 
1024 megabyte = 1 gigabytes (1 Gb) 
1024 gigabytes =1 terabyte (1tb) 
1. Decimal Number System 

Decimal number system has base 10 as it uses 10 digits from 0 to 9. In decimal number system, the successive positions to 

the left of the decimal point represent units, tens, hundreds, thousands, and so on. 

Each position represents a specific power of the base (10). For example, the decimal number 1234 consists of the digit 4 in 
the units position, 3 in the tens position, 2 in the hundreds position, and 1 in the thousands position. Its value can be 
written as 

(1 x 1000+(2 x 100+(3 x 10+(4 x l) 
(1 x 103+(2 x 102+ (3 x 101+ (4 x l00) 
1000 + 200 + 30 + 4 
1234 
Binary Number System 
Characteristics of the binary number system are as follows − 

 Uses two digits, 0 and 1 

 Also called as base 2 number system 

 First position in a binary number represents a 0 power of the base (2). Example 20 

 Last position in a binary number represents a x power of the base (2). Example 2x where x represents the last 
position-1 

Example 

Binary Number: 101012 

 
Octal Number System 

Characteristics of the octal number system are as follows − 

 Uses eight digits, 0,1,2,3,4,5,6,7 

 Also called as base 8 number system 

 First position in an octal number represents a 0 power of the base (8). Example 80 

 Last position in an octal number represents a x power of the base (8). Example 8x where x represents the last 
position - 1 

Example 

Octal Number: 125708 



Hexadecimal Number System 

Characteristics of hexadecimal number system are as follows − 

 Uses 10 digits and 6 letters, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F 

 Letters represent the numbers starting from 10. A = 10. B = 11, C = 12, D = 13, E = 14, F = 15 

 Also called as base 16 number system 

 First position in a hexadecimal number represents a 0 power of the base (16). Example, 160 

 Last position in a hexadecimal number represents a x power of the base (16). Example 16x where x represents the 
last position - 1 

Example 

Hexadecimal Number: 19FDE16 

 
Conversion of Number System 

Binary to Decimal 

Step Binary Number Decimal Number 

Step 1 101012 ((1 x 24) + (0 x 23) + (1 x 22) + (0 x 21) + (1 x 20)) 
10 

Step 2 101012 (16 + 0 + 4 + 0 + 1)10 

Step 3 101012 2110 

Example 1 
 

Example 2 
1101.0111 = (1×23) + (1×22) + (0×21) + (1×20) + (0×2-1) + (1×2-2) + (1×2-3) + (1×2-4) 
= 8 + 4 + 0 + 1 + 0 + 1/4 + 1/8 + 1/16 
= 8 + 4 + 0 + 1 + 0 + 0.25 + 0.125 + 0.0625 = 13.437510 
Hence the decimal equivalent number of 1101.01112 is given as: 13.437510 

 
Octal to Decimal 

Step Octal Number Decimal Number 

Step 1 125708 ((1 x 84) + (2 x 83) + (5 x 82) + (7 x 81) + (0 x 80)) 
10 

Step 2 125708 (4096 + 1024 + 320 + 56 + 0)10 

Step 3 125708 549610 

Example 1 



 
 

Hexadecimal to Decimal 

Step Binary 

Number 

Decimal Number 

Step 1 19FDE16 ((1 x 164) + (9 x 163) + (F x 162) + (D x 161) + (E x 160)) 
10 

 
Step 2 

 
19FDE16 

((1 x 164) + (9 x 163) + (15 x 162) + (13 x 161) + (14 x 160)) 
10 

Step 3 19FDE16 (65536+ 36864 + 3840 + 208 + 14)10 

Step 4 19FDE16 10646210 

Example 1 

Convert ( E F . B1 )16= ( ? )10 
= E x 161 + F x 160 +B x 16-1 + 1 x 16-2 
= 14 x 16 + 15 x 1 +11 x (1 / 16) + 1 x (1 /256) 
= 224 + 15 +( 0. 6 8 75) + (0. 0 0 3 9 0 6 2 5) 
= 239 + 0. 6914 
= 239.691406 
Therefore ( E F . B 1 )16 = (2 3 9.6 9 1 4 0 6 )10 

 

Decimal to Binary 
Decimal numbers can be converted to binary by repeated division of the number by 2 while recording the remainder. 

 
 
 
 
 
 
 
 
 

 
MSB 

The remainders are to be read from bottom to top to obtain the binary equivalent. 

4310 = 1010112 



 
 
 

Decimal to Octal 

Decimal numbers can be converted to octal by repeated division of the number by 8 while recording the remainder. 

 

Reading the remainders from bottom to top, 

47310 = 7318 

 
Convert (965.198)10 to ( ? )8 

 
0.198 * 8 = 1.584 MSB 
0.584 * 8 = 4.672 
0.672 * 8 = 5.376 

0.376 * 8 = 3.008 
0.008 * 8 = 0.064 
0.064 * 8 = 0.512 LSB 

 

 
(0.198)10 = (0.145300)8. 

 
Decimal to Hexadecimal 

Decimal numbers can be converted to octal by repeated division of the number by 16 while recording the remainder. 

 
Reading the remainders from bottom to top we get, 

42310 = 1A716 

 

( 0.06640625)10=( )16 

Multiplication Resultant integer part 



Multiplication Resultant integer part 

0.06640625 x 16=1.0625 1 

0.0625 x 16 =1.0 1 

0 x 16=0.0 0 

 
 

( 0.06640625)10=( 0.110)16 

 
Binary to Octal and Vice Versa 

To convert a binary number to octal number, these steps are followed − 

 Starting from the least significant bit, make groups of three bits. 

 If there are one or two bits less in making the groups, 0s can be added after the most significant bit 

 Convert each group into its equivalent octal number 

 

101100101012 = 26258 
 
 

To convert an octal number to binary, each octal digit is converted to its 3-bit binary equivalent according to this table. 

Octal Digit 0 1 2 3 4 5 6 7 

Binary Equivalent 000 001 010 011 100 101 110 111 

546738 = 1011001101110112 

 
Binary to Hexadecimal 

To convert a binary number to hexadecimal number, these steps are followed − 

 Starting from the least significant bit, make groups of four bits. 

 If there are one or two bits less in making the groups, 0s can be added after the most significant bit. 

 Convert each group into its equivalent hexadecimal number. 

 

101101101012 = DB516 

To convert a hexadecimal number to binary, each hexadecimal digit is converted to its 4-bit binary equivalent according to 
this table. 



 
 
 

Number System Relationship 

The following table depicts the relationship between decimal, binary, octal and hexadecimal number systems. 

HEXADECIMAL DECIMAL OCTAL BINARY 

0 0 0 0000 

1 1 1 0001 

2 2 2 0010 

3 3 3 0011 

4 4 4 0100 

5 5 5 0101 

6 6 6 0110 

7 7 7 0111 

8 8 10 1000 



9 9 11 1001 

A 10 12 1010 

B 11 13 1011 

C 12 14 1100 

D 13 15 1101 

E 14 16 1110 

F 15 17 1111 

Octal to Hexadecimal and vice versa 

 
While converting from octal to hexadecimal, first convert the octal number into binary digit and then further from binary to 

hexadecimal. 

Convert 536 from octal to hexadecimal number 
 

(536)8 = (101) (011) (110) 

=(101011110)2 

Now forming the group of 4 binary bits to obtain its hexadecimal equivalent, 

(101011110)2= (0001) (0101) (1110) 

= (15E)16 
 

So the hexadecimal number of 536 is 15E. 
 

While converting from hexadecimal to octal, first convert the hexadecimal number into binary digit and then further from binary 

to octal. 

Convert 15E hexadecimal number to Octal number 

(15E)16= (0001) (0101) (1110) 

= (000101011110)2 
 

Now forming the group of 3 binary bits to obtain its octal equivalent, 

(000101011110)2 = (101) (011) (110) = (536)8 

 
 

 Arithmetic Operation-Addition, Subtraction, Multiplication, Division, 1’s & 2’s complement of Binary numbers& 

Subtraction using complements method 

ADDITION: 
 

The four rules of binary addition are: 

0 + 0 = 0 

0 + 1 = 1 



1 + 0 = 1 
 

1 + 1 = 0 with a carry-over of 1 
 

Find the sum of the following numbers: 
 

i) 10101 and 11011 
 

Solution: 
10101 and 11011 

 
1 1 1 1 Carry overs 
1 0 1 0 1 

   1 1 0 1 1 
1 1 0 0 0 0 

ii) 11001 and 111 

Solution: 

11001 and 111 
 

1 1 1 1 Carry overs 
1 1 0 0 1 
  1 1 1 

1 0 0 0 0 0 
 

iii) 10101.101 and 1101.011 
 

Solution: 
10101.101 and 1101.011 

 

1 1    1 1 1 1 Carry overs 
1 0 1 0 1 . 1 0 1 

     1 1 0 1 . 0 1 1 
1 0 0 0 1 1 . 0 0 0 

 
SUBTRACTION: 

The four rules of binary subtraction are: 

0 - 0 = 0 

1 - 0 = 1 
 

1 - 1 = 0 

0 - 1 = 1 with a borrow of 1 

Subtract the following numbers: 

i) 101 from 1001 
Solution: 

 
101 from 1001 

 
1 Borrow 
1 0 0 1 

  1 0 1 
1 0 0 

 
ii) 111 from 1000 

Solution: 



111 from 1000 
 

1 Borrow 
1 0 0 0 

  1 1 1 
0 0 0 1 

 
iii) 11010.101 from 101100.011 

 

Solution: 
 

11010.101 from 101100.011 

1 1   1 Borrow 

1 0 1 1 0 0 . 0 1 1 

   1 1 0 1 0 . 1 0 1 
1 0 0 0 1 . 1 1 0 

MULTIPLICATION: 

The rules for multiplication 
 

Examples of Binary Multiplication 
 
 

 
 
 

 

 

DIVISION: 

The main rules of the binary division include: 

 
 1÷1 = 1

 1÷0 = 0

 0÷1 = Meaningless



 0÷0 = Meaningless
 

Evaluate: 
 

(i) 11001 ÷ 101 
 

Solution: 
 

101) 11001 (101 
    101  

101 
    101  

 
 

Hence the quotient is 101 

(ii) 11101.01 ÷ 1100 

Solution: 
 

1100) 11101.01 (10.0111 
     1100  

10101 
    1100  

0010 
    1100  

1100 
    1100  

 

Hence the quotient is 10.0111 
 

SIGNED-MAGNITUDE REPRESENTATION 

In this system, a number consists of a magnitude and a symbol which indicates whether the magnitude is positive or negative. 
 

In binary numbers system an extra bit position is used to represent the sign. This extra bit is called the SIGN BIT and is placed 

before the magnitude of the number to be represented. Generally, the MSB is the sign bit and the convention is that when the 

sign bit is 0, the number represented is positive and when the sign bit is 1, the number is negative. 

(00000000)2 = +(0)10 

 
(10000000)2 = -(0)10 

 

1’S & 2’S COMPLEMENT OF BINARY NUMBERS 

The 1’s complement of a binary number can be obtained by substituting each 1 by 0 and 0 by 1. 

Example: 

Binary number-101100 

1’s complement = 010011 

The 2’s complement of a binary number is 1 added to the 1’s complement of the binary number. 

Example: 

Binary number=101100 

1’s complement = 010011 

2’s complement= 1’s complement + 1 

=010100 

SUBTRACTION USING COMPLEMENTS METHOD 

1’s complement subtraction: 



 In 1’s complement subtraction, add the 1’s complement of subtrahend to minuend. 

 If there is carry, then the carry is added to the LSB. This is called end around carry. 
 If MSB is 0, the result is Positive. 
 If the MSB is 1 then the result is Negative and is in its 1’s complement form. Then take its 1’s complement to get 

magnitude in binary. 
Evaluate: 
(i) 110101 – 100101 
Solution: 
1’s complement of 10011 is 011010. Hence 

Minued - 1 1 0 1 0 1 

1’s complement of subtrahend - 0 1 1 0 1 0 

Carry over - 1 0 0 1 1 1 1 

  1 
 

0 1 0 0 0 0 
As MSB is 0, so the number is positive. Henc e the difference is 10000 

 
(ii) 101011 – 111001 
Solution: 
1’s complement of 111001 is 000110. Hence 

Minued - 1 0 1 0 1 1 
 

1’s complement - 0 0 0 1 1 0 
 

1 1 0 0 0 1 
As MSB is 1, the number is negative. Take 1’s complement of 10001 
Hence the difference is – 01 1 1 0 

 

(iii) 1011.001 – 110.10 
Solution: 
1’s complement of 0110.100 is 1001.011 Hence 

Minued - 1 0 1 1 . 0 0 1 

1’s complement of subtrahend - 1 0 0 1 . 0 1 1 

Carry over - 1 0 1 0 0 . 1 0 0 

  1 
 

0 1 0 0 . 1 0 1 

Hence the required difference is 100.101 

2’s complement subtraction: 

 In 2’s complement, add 2’s complement of subtrahend to the minuend. 
 If there is a carry ignore it. 
 If the MSB is 0, the result is Positive. 
 If the MSB is 1 the result is Negative and is in 2’s complement form. Then take its complement to get the magnitude in 

binary. 
Evaluate: 

 
10110 – 11010 
Solution: 
2’s complement of 11010 is (00101 + 1) i.e. 00110. Hence 

 
Minued - 1 0 1 1 0 

 

2’s complement of subtrahend -     0 0 1 1 0 



Result of addition - 1 1 1 0 0 
As MSB is 1, the number is negative. Take 2’s complement of 11100 
So, 1’s complement of 11100 is 00011 
2’s complement is 00011+1 =00100 
Hence the difference is – 100. 

 
 

 Digital Code & its application & distinguish between weighted & non-weight Code, Binary codes, excess-3 and Gray codes. 
 

 Digital coding is the process of using binary digits to represent letters, characters and other symbols in a digital format. 

 There are several types of digital codes widely used today, but they use the same principle of combining binary 

numbers to represent a character. 

 The most widely used Digital Codes are ASCII(American Standard Code Information Interchange),BCD(Binary Coded 

Decimal), EBCDIC(Extended Binary Coded Decimal Interchange Code) and Unicode. 

Binary codes can be classified into two types. 

 
 Weighted codes

 Unweighted codes

In weighted codes, each digit is assigned a specific weight according to its position. 

Examples: 8421code,2421code 

 
The Non - Weighted Code are not positionally weighted. In other words, codes that are not assigned with any weight to each 

digit position. 

Examples: Excess 3 code, Grey code 

 
Excess 3 code 

 
 Excess-3 code doesn’t have any weights. So, it is a non-weighted code. 

 We will get the Excess 3 code of a decimal number by adding three to the binary equivalent of that decimal number. 
Hence, it is called as Excess 3 code. 

 It is a self-complementing code. 

Convert the following numbers to Excess-3 code 
 

Grey Code 

 The Grey code is a non-weighted code. 
 No specific weight assigned to the bit positions. 
 It exhibits only a single change from one code word to the next sequence. 

Conversion of a Binary number to Gray code 

 The first bit(MSB) of the Gray code is the same as the first bit of the binary number 
 The second bit of the Gray code equals the exclusive-OR, of the first and second bits of the binary number, i.e. it will be 

1 if these binary code bits are different and 0 if they are the same. 
 The third Gray code bit equals the exclusive-OR of the second and third bits of the binary number, and so on. 



 

 
Conversion from Gray code to Binary 

 The first binary bit(MSB) is the same as that of the first the Gray code bit. 
 The second bit of the binary code equals the exclusive-OR, of the MSB and second bits of the gray code. 
 Step 2 is repeated. 

 

 
 

 LOGIC GATES: 

 
 Logic gates are the basic building blocks of any digital system. It is an electronic circuit having one or more than one 

input and only one output. The relationship between the input and the output is based on certain logic. 
 In digital system, the basic gates are AND Gate, OR gate, NOT gate. 
 NAND and NOR are called universal gates because all the other gates can be derived from it. 
 Truth table is the list of all possible combination of input and the corresponding output. 

 
NOT gate 

 

The NOT gate is an electronic circuit that produces an inverted version of the input at its output. It is also known as an inverter. 
If the input variable is A, the inverted output is known as A'. 

 

AND gate 

  

The AND gate is an electronic circuit that gives a high output (1) only if all its inputs are high. A dot (.) is used to show the AND 
operation i.e. A.B. 

 
 

OR gate 

The OR gate is an electronic circuit that gives a high output (1) if one or more of its inputs are high. A plus (+) is used to show 
the OR operation. 



NAND gate 

This is an AND gate followed by a NOT gate. The outputs of all NAND gates are high if any of the inputs are low. 

NOR gate 

  

This is an OR gate followed by a NOT gate. The outputs of all NOR gates are low if any of the inputs are high. 
 

EXOR gate 

  

The 'Exclusive-OR' gate is a circuit which will give a high output if either, but not both, of its two inputs are high. An encircled 
plus sign ( ) is used to show the EOR operation. 

 
EXNOR gate 

 

 
The 'Exclusive-NOR' gate circuit does the opposite to the EOR gate. It will give a low output if either, but not both, of its two 
inputs are high. The symbol is an EXOR gate with a small circle on the output. The small circle represents inversion. 



 
 
 

1 UNIVERSAL GATES & ITS REALISATION: 
 

NAND and NOR are called universal gates because all the other gates can be derived from it. 



 
 

 



BOOLEAN ALGEBRA, BOOLEAN EXPRESSION, DEMORGAN’S THEOREMS 
 

 Boolean algebra is the set of rules used to simplify the logic expression without changing its functionality. 

 It is used when number of variable is less (1,2,3) 
 

Boolean Theorem: 

1.INVERSION law 

This law uses the NOT operation. The inversion law states that double inversion of a variable results in the original variable 
itself. 

 

2. AND law 
 

These laws use the AND operation. Therefore, they are called as AND laws. 
 

 

3. OR law 

These laws use the OR operation. Therefore, they are called as OR laws. 
 

 

4. Commutative law 
 

Commutative law states that changing the sequence of the variables does not have any effect on the output of a logic circuit. 

5. Associative law 
 

This law states that when ORing/ANDing more than two variables, the result is the same regardless of the grouping of the 
variables. 

 
6. Distributive law 

 
Distributive law states the following condition. 

 

This law states that ORing two or more variables and then ANDing the result with a single variable is equivalent to ANDing the 
single variable with each of the two or more variables and then ORing the product. 

 

A+ (B.C) = (A+B). (A+C) 
This law states that ANDing two or more variables and then ORing the result with a single variable is equivalent to ORing the 
single variable with each of the two or more variables and then ANDing the sum. 

 

7. Absorption Laws 

 
Absorption law involves in linking of a pair of binary operations. 
i. A+AB = A 
ii. A(A+B) = A 
iii. A+ĀB = A+B 
iv. A.(Ā+B) = AB 



8. Consensus Laws 

 
i. AB + A'C + BC = AB + A'C 

 
ii. (A+B).(A'+C).(B+C) = (A+B).(A'+C) 

 
DEMORGAN’S THEOREM 

 
 The first theorem states that the complement of a product is equal to the sum of the complements. That is if the 

variables are A and B, then 

 

 The second theorem states that, the complement of a sum is equal to the product 
of the complements. In equation form, this can be written as 

 

 
 Demorgan’s Theorem can be proved for any number of variables; proof of these two theorems for two variables can be 

found in the below truth table 

 

 
A study of truth table makes clear that columns 7 and 8 are equal. Therefore, 

 

 
Similarly, columns 9 and 10 are equal. Therefore, 

 

REPRESENT LOGIC EXPRESSION: SOP & POS FORMS Sum Of Product (SOP) 

 Sum of Product is the abbreviated form of SOP. Sum of product form is a form of expression in Boolean algebra in 
which different product terms of inputs are being summed together. 

 This product is not arithmetical multiply but it is Boolean logical AND and the Sum is Boolean logical OR. 
 Example: 
 In SOP form, each product term is known as minterms 
 The product of all literals, either with complement or without complement, is known as minterm. The min terms for 

two variable x and y are x’y’, x’y, xy’ and xy. 
 If the variable value is 1, we will take the variable without its complement. 

If the variable value is 0, take its complement. 

 The minterms can be represented by m0, m1, m2, m3……; the suffix indicates the decimal code corresponding to the 

minterm combination. 



 Types of Sum of Product (SOP) Forms 

There are few different forms of Sum of Product. 

 Canonical SOP Form 
 Non-Canonical SOP Form 
 Minimal SOP Form 

 
Canonical SOP Form 

 Canonical SOP form means Canonical Sum of Products form. In this form, each product term contains all literals. So, 

these product terms are nothing but the min terms. Hence, canonical SOP form is also called as sum of min terms form. 

 The expression of the canonical SOP is denoted with sign summation (∑), and the minterms in the bracket are taken 

when the output is true. 
  The Boolean function of output is, f = p’qr + pq’r + pqr’ + pqr. This is the canonical SOP form of output, f. We can also 

represent this function in following two notations. 
f=m3+m5+m6+m7 
f=∑m(3,5,6,7) 

 

Product of Sum(POS) 
 
 

 Product of Sum is the abbreviated for POS. The product of Sum form is a form in which products of different sum 

terms of inputs are taken. 

 These are not arithmetic product and sum but they are logical Boolean AND and OR respectively. 

 Example: 
 In POS form, each sum term is known as maxterms. 
 The sum of all literals, either with complement or without complement, is known as maxterm. The maxterms for two 

variable x and y are x’+y’, x’+y, x+y’ and x+y. 
 If the variable value is 0, we will take the variable without its complement. 

If the variable value is 1, take its complement. 

 The maxterms can be represented by M0, M1, M2, M3……; the suffix indicates the decimal code corresponding to the 

maxterm combination. 
 Types of Sum Of Product (SOP) Forms 

There are few different forms of Sum of Product. 

 Canonical SOP Form 
 Non-Canonical SOP Form 
 Minimal SOP Form 

 
Canonical POS Form 

 Canonical POS form means Canonical Product of Sums form. In this form, each sum term contains all literals. So, these 
sum terms are nothing but the Max terms. Hence, canonical POS form is also called as product of Maxterms form. 

 The expression this is denoted by ∏ and the max terms in the bracket are taken when the output is false. 
 The Boolean function of output is, f = p+q+r. p+q+r′. p+q′+r. p′+q+r. This is the canonical POS form of output, f. We can 

also represent this function in following two notations. 
f=M0.M1.M2.M4 
f=∏M(0,1,2,4) 

 



Three variable minterms and maxterms 

 

Conversion of SOP form to standard SOP form or Canonical SOP form 

 
For getting the standard SOP form of the given non-standard SOP form, we will add all the variables in each product term which 
do not have all the variables. By using the Boolean algebraic law, (x + x' = 1) and by following the below steps we can easily 
convert the normal SOP function into standard SOP form. 

 
o Multiply each non-standard product term by the sum of its missing variable and its complement. 

o Repeat step 1, until all resulting product terms contain all variables 

o For each missing variable in the function, the number of product terms doubles. 

 
Example: 

 
Convert the non standard SOP function F = AB + A C + B C 

Sol: 

 

So, the standard SOP form of non-standard form is F = A B C + A B C' + A B' C + A' B C 

 
Conversion of POS form to standard POS form or Canonical POS form 

 
For getting the standard POS form of the given non-standard POS form, we will add all the variables in each product term that 
do not have all the variables. By using the Boolean algebraic law (x * x' = 0) and by following the below steps, we can easily 
convert the normal POS function into a standard POS form. 

 
o By adding each non-standard sum term to the product of its missing variable and its complement, which results in 2 

sum terms 

o Applying Boolean algebraic law, x + y z = (x + y) * (x + z) 

o By repeating step 1, until all resulting sum terms contain all variables 

 
By these three steps, we can convert the POS function into a standard POS function. 

 
Example: 

 

1. Term (p' + q + r) 

F = A B + A C + B C 

= A B (C + C') + A (B + B') C + (A + A') B C 

= A B C + A B C' + A B C + A B' C + A B C + A' B C 

= A B C + A B C' + A B' C + A' B C 

F = (p' + q + r) * (q' + r + s') * (p + q' + r' + s) 



As we can see that the variable s or s' is missing in this term. So we add s*s' = 0 in this term. 
 

2. Term (q' + r + s') 

 
Similarly, we add p*p' = 1 in this term for getting the term containing all the variables. 

 

3. Term (q' + r + s') 

 
Now, there is no need to add anything because all the variables are contained in this term. 

So, the standard POS form equation of the function is 

 

 
Conversion of SOP form to POS form 

 
For getting the POS form of the given SOP form expression, we will change the symbol ∏ to ∑. After that, we will write the 
numeric indexes of the variables which are missing in the boolean function. 

 
There are the following steps used to convert the SOP function F = ∑ x, y, z (0, 2, 3, 5, 7) = x' y' z' + z y' z' + x y' z + xyz' + xyz into 
POS: 

 
o In the first step, we change the operational sign to ∏. 

o We find the missing indexes of the terms, 001, 110, and 100. 

o We write the sum form of the noted terms. 

 

So, the POS form is: 
 

Conversion of POS to SOP form 

 
For getting the SOP form from the POS form, we have to change the symbol ∏ to ∑. After that, we write the numeric indexes of 
missing variables of the given Boolean function. 

 
There are the following steps to convert the POS function F = Π x, y, z (2, 3, 5) = x y' z' + x y' z + x y z' into SOP form: 

 
1. In the first step, we change the operational sign to Σ. 

2. Next, we find the missing indexes of the terms, 000, 110, 001, 100, and 111. 

3. Finally, we write the product form of the noted terms. 

F = (p' + q + r + s)* (p' + q + r + s')* (p + q' + r + s')* (p' + q' + r + s') * (p + q' + r' + s) 

(p' + q + r + s*s') = (p' + q + r + s) * (p' + q + r + s') 

(q' + r + s' + p*p') = (p + q' + r + s') * (p' + q' + r + s') 

001 = (x + y + z) 
 
 

100 = (x + y' + z') 
 
 

110 = (x + y' + z') 

F = Π x, y, z (1, 4, 6) = (x + y + z) * (x + y' + z') * (x + y' + z') 



 
So the SOP form is: 

 

 

 

Karnaugh map 

 Karnaugh map or K-Map method is most suitable for minimizing Boolean functions. With the help of the K-map 

method, we can find the simplest POS and SOP expression, which is known as the minimum expression. 

 It is a graphical method, which consists of 2n cells for ‘n’ variables. The adjacent cells are differed only in single bit 

position. 

  Just like the truth table, a K-map contains all the possible values of input variables and their corresponding output 

values. 

 The K-map method is used for expressions containing 2, 3, 4, and 5 variables. 

 The K-map grid is filled using 0's and 1's. The K-map is solved by making groups. 

These are the following steps used to solve the expressions using K-map: 

1. First, we find the K-map as per the number of variables. 

2. Find the maxterm and minterm in the given expression. 

3. Fill cells of K-map for SOP with 1 respective to the minterm. 

4. Fill cells of the block for POS with 0 respective to the maxterm. 

5. Next, we create rectangular groups that contain total terms in the power of two like 2, 4, 8, … and try to cover as many 

elements as we can in one group. 

6. With the help of these groups, we find the product terms and sum them up for the SOP form. 

 
2 Variable K-Map 

 
The number of cells in 2 variable K-map is four, since the number of variables is two. The following figure shows 2 variable K- 
Map. 

 

 

 There is only one possibility of grouping 4 adjacent min terms. 

 The possible combinations of grouping 2 adjacent min terms are {(m0, m1), (m2, m3), (m0, m2) and (m1, m3)}. 

 
3 Variable K-Map 

000 = x' * y' * z' 
 
 

001 = x' * y' * z 

100 = x * y' * z' 

110 = x * y* z' 

111 = x * y * z 

F = Σ x, y, z (0, 1, 4, 6, 7) = (x' * y' * z') + (x' * y' * z) + (x * y' * z') + (x * y* z') + (x * y * z) 



The number of cells in 3 variable K-map is eight, since the number of variables is three. The following figure shows 3 variable K- 
Map. 

 

 

 There is only one possibility of grouping 8 adjacent min terms. 

 The possible combinations of grouping 4 adjacent min terms are {(m0, m1, m3, m2), (m4, m5, m7, m6), (m0, m1, m4, m5), 
(m1, m3, m5, m7), (m3, m2, m7, m6) and (m2, m0, m6, m4)}. 

 The possible combinations of grouping 2 adjacent min terms are {(m0, m1), (m1, m3), (m3, m2), (m2, m0), (m4, m5), (m5, 
m7), (m7, m6), (m6, m4), (m0, m4), (m1, m5), (m3, m7) and (m2, m6)}. 

 If x=0, then 3 variable K-map becomes 2 variable K-map. 

 
4 Variable K-Map 

 
The number of cells in 4 variable K-map is sixteen, since the number of variables is four. The following figure shows 4 variable 
K-Map. 

 

 
 There is only one possibility of grouping 16 adjacent minterm. 

 Let R1, R2, R3 and R4 represents the min terms of first row, second row, third row and fourth row respectively. Similarly, 
C1, C2, C3 and C4 represents the min terms of first column, second column, third column and fourth column 
respectively. The possible combinations of grouping 8 adjacent min terms are {(R1, R2), (R2, R3), (R3, R4), (R4, R1), (C1, 
C2), (C2, C3), (C3, C4), (C4, C1)}. 

 If w=0, then 4 variable K-map becomes 3 variable K-map. 

Don’t Care condition 

 The “Don’t Care” conditions allow us to replace the empty cell of a K-Map to form a grouping of the variables. While 
forming groups of cells, we can consider a “Don’t Care” cell as either 1 or 0 or we can simply ignore that cell. Therefore, 
“Don’t Care” condition can help us to form a larger group of cells. 

 A Don’t Care cell can be represented by a cross(X) or (d) in K-Maps representing a invalid combination. 

 
UNIT-2 

COMBINATIONAL LOGIC CIRCUITS 

 
 The combinational logic circuits are the circuits that contain different types of logic gates. 
 The output of the combinational circuit is determined from the present combination of inputs, regardless of the 

previous input. 
 The input variables, logic gates, and output variables are the basic components of the combinational logic circuit. 
 There are different types of combinational logic circuits, such as Adder, Subtractor, Decoder, Encoder, Multiplexer, and 

De-multiplexer. 

https://www.geeksforgeeks.org/k-mapkarnaugh-map/


Design procedure of Combinational circuits 

 Find the required number of input variables and outputs from given specifications. 

 Formulate the Truth table. If there are ‘n’ input variables, then there will be 2n possible combinations. For each 
combination of input, find the output values. 

 Find the Boolean expressions for each output. If necessary, simplify those expressions. 

 Implement the above Boolean expressions corresponding to each output by using Logic gates. 

 
ADDER: 

 
Adder circuit is a combinational digital circuit that is used for adding two numbers. A typical adder circuit produces a sum bit 
(denoted by S) and a carry bit (denoted by C) as the output. 

 
Adder circuits are of two types: Half adder and Full adder 

 
HALF ADDER: 

 
Half adder is a combinational arithmetic circuit that adds two single bit numbers and produces a sum and carry as the output. 

There are two inputs named as A and B and the outputs are named as Sum (S) and Carry (C). 

 

 
 

 
Truth Table 

 
From Truth table, the Boolean functions for each output as 

S=A⊕B 

C=AB 

The logical diagram of Half adder is shown in the following figure. 
 



NAND gates or NOR gates can be used for realizing the half adder in universal logic and the relevant circuit diagrams are shown 
in the figure below. 

 

 

 
FULL ADDER 

 

Full Adder is the adder which adds three single bit inputs and produces two outputs. The first two inputs are A and B and the third 

input is an input carry as Cin. The output carry is designated as Carry and the normal output is designated as S which is SUM. 

 
Block diagram 

 
 

 

Truth Table 

 
K-map for SUM and CARRY 

 



Logical Diagram: 
 

OR 
 

SUM = A ⊕ B ⊕Cinn 

And 

CARRY 

 

 

 
Full Addrer Using Half adder 

 

 
HALF SUBTRACTOR 

 

The half subtractor is a combinational circuit. It has two inputs and two outputs. This circuit is used to subtract two single bit 

binary numbers A and B. The 'difference' and 'borrow' are two output states of the half subtractor. 

 

Block diagram 



Truth Table 

 
 

The SOP form of the Diff and Borrow is as follows: 

 
Diff= A'B+AB' 

Borrow = A'B 
 

 

FULL SUBTRACTOR 

 
The full subtractor is used to subtract three 1-bit numbers A, B, and C, which are minuend, subtrahend, and borrow, 
respectively. The full subtractor has three input states and two output states i.e., diff and borrow. 

 
Block diagram 

 

 
Truth Table 

 
 

The SOP form can be obtained with the help of K-map as: 
 
 

 

Diff=xy' z'+x' y' z+xyz+x'yz' 



 
 

Borrow=x' z+x' y+yz 

 
The full subtractor logic circuit diagram 

 

 

Construction of Full Subtractor Circuit using half subtractor: 
 
 
 

 
ENCODERS 

 
The combinational circuits that change the binary information into N output lines are known as Encoders. The binary 
information is passed in the form of 2N input lines. The output lines define the N-bit code for the binary information. At a time, 
only one input line is activated for simplicity. 

 
 

 
 

There are various types of encoders which are as follows: 

 
4 to 2 line Encoder: 

 
In 4 to 2 line encoder, there are total of four inputs, i.e., Y0, Y1, Y2, and Y3, and two outputs, i.e., A0 and A1. In 4-input lines, one 
input-line is set to true at a time to get the respective binary code in the output side. 



Block Diagram: 
 

 
Truth Table: 

 

The logical expression of the term A0 and A1 is as follows: 

 
A1=Y3+Y2 
A0=Y3+Y1 

 
Logical circuit of the above expressions is given below: 

 

 
8 to 3 line Encoder: 

 
The 8 to 3 line Encoder is also known as Octal to Binary Encoder. In 8 to 3 line encoder, there is a total of eight inputs, i.e., Y0, Y1, 
Y2, Y3, Y4, Y5, Y6, and Y7 and three outputs, i.e., A0, A1, and A2. In 8-input lines, one input-line is set to true at a time to get the 
respective binary code in the output side. 

 
Block Diagram: 

 



Truth Table: 

 
 

The logical expression of the term A0, A1, and A2 are as follows: 

 
A2=Y4+Y5+Y6+Y7 
A1=Y2+Y3+Y6+Y7 
A0=Y7+Y5+Y3+Y1 

 
Logical circuit of the above expressions is given below: 

 

 

DECODER 

The combinational circuit that change the binary information into 2N output lines is known as Decoders. The binary information 

is passed in the form of N input lines. The output lines define the 2N-bit code for the binary information. In simple words, 

the Decoder performs the reverse operation of the Encoder. At a time, only one input line is activated for simplicity. 

 

 
There are various types of decoders which are as follows: 

 
2 to 4 line decoder: 

 
In the 2 to 4 line decoder, there is a total of three inputs, i.e., A0, and A1 and E and four outputs, i.e., Y0, Y1, Y2, and Y3. For each 
combination of inputs, when the enable 'E' is set to 1, one of these four outputs will be 1. 

 
Block Diagram: 



Truth Table: 

 

The logical expression of the term Y0, Y0, Y2, and Y3 is as follows: 

 
Y3=E.A1.A0 
Y2=E.A1.A0' 
Y1=E.A1'.A0 
Y0=E.A1'.A0' 

 
Logical circuit of the above expressions is given below: 

 

 
3 to 8 line decoder: 

 
The 3 to 8 line decoder is also known as Binary to Octal Decoder. In a 3 to 8 line decoder, there is a total of eight outputs, i.e., 
Y0, Y1, Y2, Y3, Y4, Y5, Y6, and Y7 and three outputs, i.e., A0, A1, and A2. This circuit has an enable input 'E'. Just like 2 to 4 line 
decoder, when enable 'E' is set to 1, one of these four outputs will be 1. 

 
Block Diagram: 

 
Truth Table: 



The logical expression of the term Y0, Y1, Y2, Y3, Y4, Y5, Y6, and Y7 is as follows: 
 

Y0=A0'.A1'.A2' 
Y1=A0.A1'.A2' 
Y2=A0'.A1.A2' Y3=A0.A1.A2' 

 

Digital Comparator 

 
 

 
Y4=A0'.A1'.A2 
Y5=A0.A1'.A2 
Y6=A0'.A1.A2 
Y7=A0.A1.A2 

 

A magnitude digital comparator is a combinational circuit that compares two digital or binary numbers (consider A and B) and 
determines their relative magnitudes in order to find out whether one number is equal, less than or greater than the other 
digital number. 

 

Three binary variables are used to indicate the outcome of the comparison as A>B, A<B, or A=B. The below figure shows the 
block diagram of a n-bit comparator which compares the two numbers of n-bit length and generates their relation between 
themselves. 

 
 

Types of Magnitude Comparators 

 
There are different kinds of magnitude comparators which include the following. 

 

1- bit Magnitude Comparator 

 
A comparator that compares two binary bits and produces three outputs based on the relative magnitudes of given binary bits is 
called a 1-bit magnitude comparator. 

 

Truth Table 

 

The truth table derives the expressions of A<B, A>B and A=B as below 



A<B – A′B 
A>B – AB′ 
A=B – A′B′+AB 

With these expressions, the Circuit diagram can be as follows 
 
 
 

 
2- bit Magnitude Comparator 

 
A comparator that compares two binary numbers (each number having 2 bits) and produces three outputs based on the relative 
magnitudes of given binary bits is called a 2-bit magnitude comparator. 

 

Truth Table 
 
 
 

 
The truth table derives the expressions of A<B, A>B, and A=B as below 

 

A<B – A1′B1′+ A0′B1B0 + A1′A0′B0 
A>B – A1B1′ + A0B1′B0′ + A1A0B0′ 

A=B – (A0 Ex-Nor B0) (A1 Ex-Nor B1) 
With these expressions, the Circuit diagram can be as follows 



 
 

 

3- bit Magnitude Comparator 

 
A comparator that compares two binary numbers (each number having 3 bits) and produces three outputs based on the relative 
magnitudes of given binary bits is called a 3-bit magnitude comparator. 

 
 

 
The equal functions are A0 = B0, A1= B1, A2 = B2 
Then A=B 
= (A0′B0′ + A0B0)(A1′B1′ + A1B1)(A2′B2′+ A2B2) 

 

The output is A< B in the cases of 
A2<B2 
A2 = B2 then A1<B1 
A2 = B2, A1 = B1 then A0<B0 
A<B = A2′B2 + [(A2′B2′ + A2B2) ×A1′B1] + [(A2′B2′ + A2B2) × [(A1′B′ + A1B1) × A0′B0] 
The output is A> B in the cases of 
A2>B2 
A2 = B2 then A1>B1 
A2 = B2, A1 = B1 then A0>B0 
A>B = A2B2′ + + [(A2′B2′ + A2B2) ×A1B1′] + [(A2′B2′ + A2B2) × 
[(A1′B′ + A1B1) ×A0B0′] 

 



1 

MULTIPLEXER 

Multiplexer is a combinational circuit that has maximum of 2n data inputs, ‘n’ selection lines and single output line. One of 
these data inputs will be connected to the output based on the values of selection lines. 

Since there are ‘n’ selection lines, there will be 2n possible combinations of zeros and ones. So, each combination will select 
only one data input. Multiplexer is also called as Mux 

There are various types of the multiplexer which are as follows: 
 

2×1 Multiplexer: 

 
In 2×1 multiplexer, there are only two inputs, i.e., A0 and A1, 1 selection line, i.e., S0 and single outputs, i.e., Y. On the basis of the 
combination of inputs which are present at the selection line S, one of these 2 inputs will be connected to the output. 

 
Block Diagram: 

 
Truth Table: 

 

The logical expression of the term Y is as follows: 

 
Y=S0'.A0+S0.A1 

 
Logical circuit of the above expression is given below: 

 

 
4×1 Multiplexer: 

 
In the 4×1 multiplexer, there is a total of four inputs, i.e., A0, A1, A2, and A3, 2 selection lines, i.e., S0 and S1 and single output, i.e., 
Y. On the basis of the combination of inputs that are present at the selection lines S0 and S , one of these 4 inputs are connected 
to the output. 

Block Diagram: 



Truth Table: 

 
 

The logical expression of the term Y is as follows: 

 
Y=S1' S0' A0+S1' S0 A1+S1 S0' A2+S1 S0 A3 

 
Logical circuit of the above expression is given below: 

 

 
DE-MULTIPLEXER 

De-Multiplexer is a combinational circuit that performs the reverse operation of Multiplexer. It has single input, ‘n’ selection 
lines and maximum of 2n outputs. The input will be connected to one of these outputs based on the values of selection lines. 

Since there are ‘n’ selection lines, there will be 2n possible combinations of zeros and ones. So, each combination can select 
only one output. De-Multiplexer is also called as De-Mux. 

There are various types of De-multiplexer which are as follows: 
 

1×2 De-multiplexer: 
 

In the 1 to 2 De-multiplexer, there are only two outputs, i.e., Y0, and Y1, 1 selection lines, i.e., S0, and single input, i.e., A. On the 

basis of the selection value, the input will be connected to one of the outputs. 

 

Block Diagram: 



Truth Table: 

 

 
The logical expression of the term Y is as follows: 

 

Y0=S0'.A 

Y1=S0.A 

 
Logical circuit of the above expressions is given below: 

 

 
1×4 De-multiplexer: 

 

In 1 to 4 De-multiplexer, there are total of four outputs, i.e., Y0, Y1, Y2, and Y3, 2 selection lines, i.e., S0 and S1 and single input, 

i.e., A. On the basis of the combination of inputs which are present at the selection lines S0 and S1, the input be connected to 

one of the outputs. 

 

Block Diagram: 

 
Truth Table: 

 
 

The logical expression of the term Y is as follows: 
 

Y0=S1' S0' A 

y1=S1' S0 A 



y2=S1 S0' A 

y3=S1 S0 A 

 
Logical circuit of the above expressions is given below: 

 

SEVEN SEGMENT DECODER 
 

Seven segment displays are the output display device that provides a way to display information in the form of image or text or 

decimal numbers. 

One of the most commonly used decoder drive is a BCD to 7-segment decoder. In this decoder the outputs are used to drive seven 

segments. 

It is widely used in digital clocks, basic calculators, electronic meters, and other electronic devices that display numerical information. 

BCD to seven segment decoder has four input lines A, B, C and D and 7 output lines a, b, c, d, e, f and g. As the numbers which are 

greater than 9 are not a permitted combination it is assumed that they will not occur. 
 

 

 
 

10 1 0 1 0 × × × × × × × 

11 1 0 1 1 × × × × × × × 

12 1 1 0 0 × × × × × × × 

13 1 1 0 1 × × × × × × × 



14 1 1 1 0 × × × × × × × 

15 1 1 1 1 × × × × × × × 

From the above truth table, the Boolean expressions of each output functions can be written as 
 

a = F1 (A, B, C, D) = ∑m (0, 2, 3, 5, 7, 8, 9) 
b = F2 (A, B, C, D) = ∑m (0, 1, 2, 3, 4, 7, 8, 9) 
c = F3 (A, B, C, D) = ∑m (0, 1, 3, 4, 5, 6, 7, 8, 9) 
d = F4 (A, B, C, D) = ∑m (0, 2, 3, 5, 6, 8) 
e = F5 (A, B, C, D) = ∑m (0, 2, 6, 8) 
f = F6 (A, B, C, D) = ∑m (0, 4, 5, 6, 8, 9) 
g = F7 (A, B, C, D) = ∑m (2, 3, 4, 5, 6, 8, 9) 
K-Map Simplification 

 

 

 

 
 

 

From the above simplification, we get the output values as 
 
 



The logic circuit for each output signal of 7- segment display as follow 
 
 

 
 

SERIAL BINARY ADDER 
 

Serial binary adder is a combinational logic circuit that performs the addition of two binary numbers in serial form. Serial binary 
adder performs bit by bit addition. Two shift registers are used to store the binary numbers that are to be added. 
A single full adder is used to add one pair of bits at a time along with the carry. The carry output from the full adder is applied to a D 
flip-flop. After that output is used as carry for next significant bits. The sum bit from the output of the full adder can be transferred 
into a third shift register. 

 

Shift Registers : 
Shift Register is a group of flip flops used to store multiple bits of data. There are two shift registers used in the serial binary adder. 
In one shift register augend is stored and in other shift register addend is stored. 
Full Adder : 
Full adder is the combinational circuit which takes three inputs and gives two outputs as sum and carry. The circuit adds one pair at 
a time with the help of it. 
D Flip-flop : 
The carry output from the full adder is applied on the D flip-flop. Further, the output of D flip-flop is used as a carry input for the 
next pair of significant bits. 
Working Process: 
Following is the procedure of addition using serial binary adder: 

 Step-1: 
The two shift registers A and B are used to store the numbers to be added. 

 Step-2: 
A single full adder is used to add one pair of bits at a time along with the carry. 

 Step-3: 
The contents of the shift registers shift from left to right and their output starting from a and b are fed into a single full 
adder along with the output of the carry flip-flop upon application of each clock pulse. 

https://www.geeksforgeeks.org/construction-of-combinational-circuits/
https://www.geeksforgeeks.org/full-adder-in-digital-logic/
https://www.geeksforgeeks.org/flip-flop-types-their-conversion-and-applications/
https://www.geeksforgeeks.org/flip-flop-types-their-conversion-and-applications/
https://www.geeksforgeeks.org/shift-registers-in-digital-logic/
https://www.geeksforgeeks.org/full-adder-in-digital-logic/
https://www.geeksforgeeks.org/flip-flop-types-their-conversion-and-applications/


 Step-4: 
The sum output of the full adder is fed to the most significant bit of the sum register. 

 Step-5: 
The content of sum register is also shifted to right when clock pulse is applied. 

 Step-6: 
After applying four clock pulse the addition of two registers (A & B) contents are stored in sum register. 

 

PARALLEL BINARY ADDER 
 

A digital circuit that is used to perform the addition of two binary numbers & an i/p carry, where the length of one bit is larger 
than another bit and operates in parallel with equivalent pairs of bits. 
The arrangement of parallel adder can be done by arranging the full adders (FAs) in a chain model where the carry o/p from 
every full adder (FA1) can be linked to the carry i/p of the next full adder (FA2) within the chain. 

 
Two 4-bit binary numbers B 4B 3B 2B 1 and A 4A 3A 2A 1 are to be added with a carry input C 1. This can be done by cascading four 

full adder circuits as shown in Figure. The least significant bits A 1, B 1, and C 1 are added to the produce sum output S 1 and carry 

output C 2. Carry output C 2 is then added to the next significant bits A 2 and B 2 producing sum output S 2 and carry output C 3. 

C 3 is then added to A 3 and B 3 and so on. Thus finally producing the four-bit sum output S 4S 3S 2S 1 and final carry output Cout. 

Such type of four-bit binary adder is commercially available in an IC package. 

 

 

UNIT-3 
Unit-3: Sequential logic Circuits 

 Principle of flip-flops operation, its Types 
 

 A flip flop is an electronic circuit with two stable states that can be used to store binary data. The stored data can be 

changed by applying varying inputs.

 Flip flop is formed using logic gates such as two NAND and NOR gates which are in turn made of transistors.

 As flip flops have two stable states, hence they are called as Bistablemultivibrators. The two stable states are High (logic 
1) and Low (logic 0).

 Flip-flops and latches are fundamental building blocks of digital electronics systems used in computers, 

communications, and many other types of systems. Flip-flops and latches are used as data storage elements.

Latches vs Flip-Flops 
 

 Latches and flip flops are both 1bit binary data storage devices.
 The main difference between a latch and a flip flop is the triggering mechanism. Latches are transparent when enabled, 

whereas flip flops are dependent on the transition of the clock signal i.e. either positive edge or negative edge.

 

https://www.elprocus.com/half-adder-and-full-adder/
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Types of flip flops 

 
Based on their operations, flip flops are basically 4 types. They are 

i. S-R flip flop 
ii. D flip flop 

iii. J-K flip flop 
iv. T flip flop 

SR Flip Flop using NAND, NOR Latch (un clocked) 
 

The SR flip-flop also known as a SR Latch. It has two inputs, one is “SET” labelled S and other is “RESET” labelled R. 

The reset input resets the flip-flop back to its original state with an output Q that will be either at a logic level “1” or logic “0” 
depending upon this set/reset condition. 

Then the SR flip-flop actually has three inputs, Set, Reset and its current output Q relating to its current state or history. The 
term “Flip-flop” relates to the actual operation of the device, as it can be “flipped” into one logic Set state or “flopped” back into 
the opposing logic Reset state. 

SR Flip Flop using NAND: 

The basic single bit set-reset SR flip-flop is to connect together a pair of cross-coupled 2-input NAND gates, there is feedback 
from each output to one of the other NAND gate inputs. It consists of two inputs, one called the Set, S and the other called 
the Reset, R with two corresponding outputs Q and its inverse or complement Q̄ . 

Operation 
 

 When S=0 and R= 0, then both the outputs of gate G1 and G2 try to become 1, which is not possible. There is a race 

between the outputs. 

 When S=0 and R= 1, then the output of G2 is 1 and that of G1 is 0 (Q=0) and the memory is said to be reset. 

 When S=1 and R= 0, then the output of G2 is 0 and that of G1 is 1 (Q=1) and the memory is said to be set. 

 When S=1 and R= 1, then the output remains unchanged. 

According to inputs S and R, the data logic 0 or logic 1 can be loaded or stored into the logic circuit. 

 
SR Flip Flop using NOR: 

The basic single bit set-reset SR flip-flop is to connect together a pair of cross-coupled 2-input NOR gates, there is feedback from 

each output to one of the other NOR gate inputs. It consists of two inputs, one called the Set, S and the other called 

the Reset, R with two corresponding outputs Q and its inverse or complement Q̄ . 

Operation 

 When S=0 and R= 0, the output remains unchanged. 

 When S=0 and R= 1, then the output of G1is 0 (Q=0) and that of G2 is 1 and the memory is reset. 

 When S=1 and R= 0, then the output of G1 is 1 (Q=1) and that of G2 is 0 and the memory is set. 

 When S=1 and R= 1, then the outputs of both the gates try to become 0, which is not possible, and there is a race 

between the outputs. 

 
C l o c k e d SR, D, JK, T, JK Master Slave flip-flops-Symbol, logic Circuit, truth table and applications 

Clocked SR flip-flop 

A clocked SR flip-flop is designed by adding two NAND gates to a basic NAND gate un-clocked flip-flop. These two NAND gates 

are used to apply clock pulse. The simple S-R flip flop will be set or reset any time by changing the inputs S and R. 

Operation: 

When the clock is absent (CLK=0), the outputs of both the gates G3 and G4 are 1 and there is no change in the outputs of G1 and 

G2. When the clock is present (CLK=1), the outputs of G3 and G4 are the function of the inputs S and R. 

 When S=0 and R=0, then the outputs of G3 and G4 are 1, the outputs of G1 and G2 are unchanged.

 When S=0 and R=1, then the output of G3 is 1 and that of G4 is 0, the output of G1 is 0 and that of G2 is 1. The flip-flop 

is reset.

 When S=1 and R=0, then the output of G3 is 0 and that of G4 is 1, the output of G1 is 1 and that of G2 is 0. The flip-flop 

is set.

 When S=1 and R=1, then the outputs of G3 and G4 are 0, and the outputs of G1 and G2 try to become1, which is not 

possible. There is a race and the output is undefined and it is known as forbidden state.



Sn and Rn are the present inputs, Qnis the present output, and Qn+1 is the output after the clock. 

Case 1: For S=0, R=0 and CLK=0, the flip-flop simply remains in its present state. That is, Q remains unchanged. Even for S=0, R=0 

and CLK=1, the flip-flop remains in its present state. This condition will not affect the outputs of flip-flop. 

Case 2: For S=0, R=1 and CLK=0, the flip-flop remains in its present state. But, when CLK=1, the NAND gate-1 output will go to 1 

and the NAND gate 2 output will go to 0. Now a 0 NAND gate 4 input forces Q̄ = 1 which in turn results in NAND gate 3 output 

Q=0. Thus, for S=0, R=1 and CLK=1, the flip-flop RESET to the 0 state. 

Case 3: For S=1, R=0 and CLK=0, the flip-flop remains in its present state. But for S=1, R=0 and CLK=1, the set state of the flip-flop 

is reached. This causes the NAND gate 1 output to go 0 and the NAND gate 2 output to 1. Now, a 0 at NAND gate 3 input forces 

Q to 1 which in turn forces NAND gate 4 output Q̄  to 0. 

Case 4: An indeterminate condition occurs when all the inputs, namely CLK, S and R are equal to 1. This condition results in 0’s in 

the outputs of gate 1 and 2 and 1’s in both outputs Q and Q̄ . When the CLK input goes back to 0 (while S and R remain at 1), it is 

not possible to determine the next state, as it depends on whether the output of gate 1 or gate 2 goes to 1 first. 

 

 
D FLIP-FLOP 

 

The D flip-flop has only one input called the Delay (D) input and outputs Q and Q̄ . It can be constructed from an S-R flip-flop by 

inserting an inverter between S and R and assigning the symbol D to the S input. 

Operation: 

 When the CLK input is LOW, the D input has no effect, since the set and reset inputs of the NAND flip-flop are kept 

HIGH.

 When the CLK goes HIGH, the Q output will take on the value of the D input.

If CLK=1 and D=1, the NAND gate-1 output goes 0 and output of NAND gate goes 1. The basic NAND S-R flip-flop output 

will be 1, i.e it follows D input. Similarly, for CLK =1 and D =0, the flip-flop output will be 0. If D changes while the CLK is 

HIGH, Q will follow and change quickly. 

It is clear that the next state of the flip-flop at time Qn+1 follows the value of the input D when the clock pulse is applied. As 

transfer of data from the input to the output is delayed, it is known as delay(D) flip-flop. 

The delay flip-flop is either used as a delay or as a latch to store 1 bit of binary information. 

JK FLIP-FLOP: 

T FLIP-FLOP: 
 

 Concept of Racing and how it can be avoided 

When J=K=1 and if Q=0, a clock pulse of width tp is applied, the output will change from 0 to 1 after a time interval ∆t, where ∆t 

is the propagation delay through two NAND gates in series. Now after ∆t, we have J=K=1 and Q=1 and after, another interval of 

∆t, output Q will become 0. Hence the output will oscillate back and forth between 0 and 1 in the duration tpof the clock pulse 

width. So at the end of the clock pulse, the value of Q is ambiguous. This situation is known as Race- Around condition. 

The race around condition can be avoided if tp<∆t. Lumped delay lines can be used in series with the feedback connections in 

order to increase the loop delay beyond and hence to prevent the race around difficulty. The race around condition can also be 

avoided in Master- Slave flip-flop. 

UNIT-5 
 

Unit-5: A/D and D/A Converters 

 Necessity of A/D and D/A converters. 
 

 To convert the data from one form into another form 





******To convert one form of signal with other 

A Digital to Analog Converter (DAC) converts a digital input signal into an analog output signal. The digital signal is represented 

with a binary code, which is a combination of bits 0 and 1. 



 
 

There are two types of DACs 

 
 Weighted Resistor DAC 

 R-2R Ladder DAC 

 

D/A conversion using weighted resistors methods. 
 

A weighted resistor DAC produces an analog output, which is almost equal to the digital (binary) input by using binary weighted 

resistors in the inverting adder circuit. 
 

 It uses binary weighted resistor 21R, 22R………2nR and summing amplifier. 

 The MSB input is connected with lowest resistor and towards LSB the resistance value is made twice of previous 

resistor. 

 The purpose of increasing the resistor value is to pass minimum current through the LSB resistance while maximum 

current through MSB resistance. 

 Here n number of electronic switches are used to provide digital input. 

When switch is connected to (-VR), b1=1 

When switch is connected to ground b1 =0 
 

 b1  b2 bN 

Output voltage= VR ( 
2 

+
22

+………
2N

) 

 Example: 
 

D/A conversion using R-2R ladder (Weighted resistors) network. 

 R-2R ladder D/A converter produces an analog output, which is almost equal to the digital input by using R-2R ladder 

network in the inverting adder circuit. 

 

 In R-2R ladder D/A converter, resistors of only two values i.e R and 2R are used. 

 The inverting input terminal of the op-amp acts as summing junction for the ladder inputs. 



 bN 
 

 

b2  b1 
 

  Output voltage= VR (
2N

+…….+
22

+ 
2 

) 

 Example 
 

********An Analog to Digital Converter (ADC) converts an analog signal into a digital signal. The digital signal is represented 

with a binary code, which is a combination of bits 0 and 1. 
 

There are 3 types of ADCs 

 
 Counter type ADC 

 Successive Approximation ADC 

 Flash type ADC 

 

A/D conversion using counter method. 

A counter type ADC produces a digital output, which is approximately equal to the analog input by using counter operation 
internally. 

The block diagram of a counter type ADC is shown in the following figure − 
 

The counter type ADC mainly consists of 5 blocks: Clock signal generator, Counter, DAC, Comparator and Control logic. 

The working of a counter type ADC is as follows − 

 The control logic resets the counter and enables the clock signal generator in order to send the clock pulses to the 
counter, when it received the start commanding signal. 

 The counter gets incremented by one for every clock pulse and its value will be in binary (digital) format. This output of 
the counter is applied as an input of DAC. 

 DAC converts the received binary (digital) input, which is the output of counter, into an analog output. Comparator 
compares this analog value, with the external analog input value. 

 The output of comparator will be ‘1’ as long as 𝑉i is greater than. The operations mentioned in above two steps will be 
continued as long as the control logic receives ‘1’ from the output of comparator. 

 The output of comparator will be ‘0’ when Va is less than or equal to Vi. So, the control logic receives ‘0’ from the 
output of comparator. Then, the control logic disables the clock signal generator so that it doesn’t send any clock 
pulse to the counter. 

 At this instant, the output of the counter will be displayed as the digital output. It is almost equivalent to the 
corresponding external analog input value. 



A/D conversion using Successive approximate method 
 

A successive approximation type ADC produces a digital output, which is approximately equal to the analog input by using 
successive approximation technique internally. 

The block diagram of a successive approximation ADC is shown in the following figure 
 

The successive approximation ADC mainly consists of 5 blocks− Clock signal generator, Successive Approximation Register 
(SAR), DAC, comparator and Control logic. 

The working of a successive approximation ADC is as follows − 

 The control logic resets all the bits of SAR and enables the clock signal generator in order to send the clock pulses to 
SAR, when it received the start commanding signal. 

 The binary (digital) data present in SAR will be updated for every clock pulse based on the output of comparator. The 
output of SAR is applied as an input of DAC. 

 DAC converts the received digital input, which is the output of SAR, into an analog output. The comparator compares 
this analog value Vawith the external analog input value Vi. 

 The output of a comparator will be ‘1’ as long as Vi is greater than Va. Similarly, the output of comparator will be ‘0’, 
when Vi is less than or equal to Va . 

 The operations mentioned in above steps will be continued until the digital output is a valid one. 

 
 

UNIT-6 
Unit-6: LOGIC FAMILIES 

 Various logic families &categories according to the IC fabrication process 
 

 A logic family is a collection of different integrated circuit chips that have similar input, output and internal circuit 

characteristics but that perform different logic functions. 

 The circuit design of the basic gate of each logic family is the same. 

 The most important parameters for evaluating and comparing logical families include: logic levels, power dissipation, 

propagation delay, noise margin, Fan out 

 



Characteristics of Digital ICs- Propagation Delay, fan-out, fan-in, Power Dissipation ,Noise Margin ,Power Supply requirement 

&Speed with Reference to logic families. 

Propagation Delay: 
 

fan-out 

fan-in 

Power Dissipation 

Noise Margin 

Power Supply requirement &Speed 
 

Features, circuit operation &various applications of TTL(NAND), CMOS (NAND & NOR) 

Transistor Transistor Logic (TTL) 

The basic circuit for TTL logic family is the NAND gate. The TTL circuit uses a special single multi- emitter transistor that is 

fabricated with several emitters at its input. The number of emitters used depends on the desired fan-in of the circuit. 
 

Circuit operation: 
 

 When any one of the input is logic 0, the emitter junctions of transistor T1 are forward biased. The required voltage to 

conduct T2 and T3 is greater than the voltage available at the base of T1 and hence T2 and T3 are in cut-off. The output 

voltage is equal to the supply voltage Vcc, output is in logic 1 state. 

 When all the inputs are in logic 1 state, the emitter junction of T1 are reverse biased and the current supply by the 

source is sufficient to operate T2 and T3 in saturation and the output is in logic 0 state. 
 

Application: 
 

 Switching device in driving lamps and relays 

 Processors of mini computers 

 Used in printers and video display terminals 

CMOS NAND: 



 
 

 

CMOS NOR 
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